Tài nguyên Blog

Liên kết Website

Thành viên trực tuyến

0 khách và 0 thành viên

Thống kê

  • truy cập   (chi tiết)
    trong hôm nay
  • lượt xem
    trong hôm nay
  • thành viên
  • Ảnh ngẫu nhiên

    IMG_5693.JPG IMG_5911.JPG Xuan_2018.png Banner_Violet.jpg Banner.png Chuc_mung_nam_moi.jpg Bai_thi_so_2__lop_3.flv Bai_lam_so_3.flv Bai_thi_so_3__lop_3.flv Picture61.png Images_13.jpg WewishyouamerychristmasEnya_7yht.mp3 Silent_Night.mp3 Nhat_Ky_Cua_Me__Hien_Thuc.mp3 LON_MET.jpg GA_SONG_THIEN.jpg IMG_20130418_060853.jpg Chucmungnammoi2013_ngayxuanlongphuongxumvay.swf Bannertet2013.swf Mauchuvietbangchuhoadung.png

    Sắp xếp dữ liệu

    Hỗ trợ trực tuyến

    • (Nguyễn Hồng Chuyên)

    ĐỀ THI - ĐÁP ÁN TUYỂN SINH VÀO LỚP 10 MÔN TOÁN TỈNH HẢI DƯƠNG 2016 - 2017

    Nhấn vào đây để tải về
    Hiển thị toàn màn hình
    Báo tài liệu có sai sót
    Nhắn tin cho tác giả
    (Tài liệu chưa được thẩm định)
    Nguồn:
    Người gửi: Phạm Thị Thủy (trang riêng)
    Ngày gửi: 21h:39' 25-07-2016
    Dung lượng: 248.5 KB
    Số lượt tải: 756
    Số lượt thích: 0 người
    SỞ GIÁO DỤC VÀ ĐÀO TẠO
    HẢI DƯƠNG


    KỲ THI TUYỂN SINH LỚP 10 THPT
    NĂM HỌC 2016 - 2017
    Môn thi: TOÁN
    Thời gian làm bài: 120 phút, không kể thời gian giao đề
    (Đề thi gồm có 01 trang)

    
    Câu 1 (2,0 điểm) Giải phương trình và hệ phương trình sau:
    a)  b) 
    Câu 2 (2,0 điểm)
    a) Rút gọn biểu thức:  với .
    b) Tìm m để phương trình: x2  5x + m  3 = 0 có hai nghiệm phân biệt  thoả mãn
    .
    Câu 3 (2,0 điểm)
    a) Tìm a và b biết đồ thị hàm số y = ax + b đi qua điểm A và song song với đường thẳng y = 3x + 1.
    b) Một đội xe phải chuyên chở 36 tấn hàng. Trước khi làm việc, đội xe đó được bổ sung thêm 3 xe nữa nên mỗi xe chở ít hơn 1 tấn so với dự định. Hỏi đội xe lúc đầu có bao nhiêu xe? Biết rằng số hàng chở trên tất cả các xe có khối lượng bằng nhau.
    Câu 4 (3,0 điểm) Cho nửa đường tròn (O) đường kính AB. Gọi C là điểm cố định thuộc đoạn thẳng OB (C khác O và B). Dựng đường thẳng d vuông góc với AB tại điểm C, cắt nửa đường tròn (O) tại điểm M. Trên cung nhỏ MB lấy điểm N bất kỳ (N khác M và B), tia AN cắt đường thẳng d tại điểm F, tia BN cắt đường thẳng d tại điểm E. Đường thẳng AE cắt nửa đường tròn (O) tại điểm D (D khác A).
    a) Chứng minh: AD.AE = AC.AB.
    b) Chứng minh: Ba điểm B, F, D thẳng hàng và F là tâm đường tròn nội tiếp tam giác CDN.
    c) Gọi I là tâm đường tròn ngoại tiếp tam giác AEF. Chứng minh rằng điểm I luôn nằm trên một đường thẳng cố định khi điểm N di chuyển trên cung nhỏ MB.
    Câu 5 (1,0 điểm) Cho a, b, c là ba số thực dương thoả mãn: abc = 1.
    Tìm giá trị lớn nhất của biểu thức: 
    ----------------------------Hết----------------------------
    Họ và tên thí sinh:............................................................Số báo danh:.....................................
    Chữ kí của giám thị 1: ........................................Chữ kí của giám thị 2: ..................................


    SỞ GIÁO DỤC VÀ ĐÀO TẠO
    HẢI DƯƠNG
    ĐÁP ÁN VÀ HƯỚNG DẪN CHẤM MÔN TOÁN
    ĐỀ THI TUYỂN SINH LỚP 10 THPT
    NĂM HỌC 2016 - 2017
    (Hướng dẫn chấm gồm: 04 trang)
    
    Nếu học sinh làm cách khác đúng vẫn cho điểm tối đa.
    Câu

    Nội dung
    Điểm
    
    1
    
    Giải phương trình và hệ phương trình sau:
    a)  b) 
    2,00
    
    
    a

    PT 
    0,25
    0,25
    
    
    
      
    0,25
    0,25
    
    
    b
    (1) y = -2x + 3
    0,25
    
    
    
    Thế vào (2) được: 
    0,25
    
    
    
     
    0,25
    
    
    
    Từ đó tính được y = 3. Hệ PT có nghiệm (0;3).
    0,25
    
    2
    a
    Rút gọn biểu thức: với .
    1,00
    
    
    
    +) 
    =
    0,25
    
    
    
    +) 
    0,25
    
    
    
    A = .
    0,25
    
    
    
    A = 
    0,25
    
    2
    b
    Tìm m để phương trình: x2  5x + m  3 = 0 có hai nghiệm phân biệt  thoả mãn  (1)
    1,00
    
    
    
     +) Có:  37 - 4m, phương trình có hai nghiệm phân biệt khi 
    0,25
    
    
    
     +) Theo Vi-et có : x1 + x2 = 5 (2) và x1x2 = m - 3 (3)
    Từ (2) suy ra x2 = 5 - x1, thay vào (1) được 3x12 - 13x1 + 14 = 0, giải phương trình tìm được x1 = 2 ; x1 = .
    



    0,25
    
    
    
    +) Với x1 = 2 tìm được x2 = 3, thay vào (3) được m = 9.
    0,25
    
    
    
     +) Với x1 =  tìm được x2 = , thay vào (3) được m = .
    0,25
    
    3
    a
    Tìm a và b biết đồ thị hàm số y = ax + b đi qua điểm A và song song với đường thẳng y = 3x + 1.
    1,00
    
     
    Gửi ý kiến

    Báo mới